

MOTIVATION

- Mobile robotic swarms are susceptible to stealthy attacks (such as system hijacking) that can affect its swarming behavior and performance.
- Smart attackers are able to learn and leverage information about the robot system models and noise characteristics to develop stealthy attacks.
- Attacks intending to hijack a mobile robot will leave traces of non-random behavior that contradict model and swarm behaviors.

OBJECTIVE

- Monitor information for **non-random** and **inconsistent** behavior.
- **Detect** and **isolate** compromised vehicles from the robotic swarm.
- Maintain a task, such as performing go-to-goals operations.

VIRTUAL SPRING-MASS SYSTEM

Figure 1. Swarming formation follows a network of virtual spring-masses.

$$\ddot{X}_{i} = \left[\sum_{j \in \mathcal{S}_{i}} k_{ij} \left(l_{ij} - l_{ij}^{0}\right) \hat{\mathbf{d}}_{ij}\right] - \gamma_{i} \dot{X}_{i}$$

Equation 1. Acceleration is determined by the sum of all spring forces.

Video 1. Virtual Spring-Mass example.

Cumulative Sign Detector for Stealthy Attacks on Mobile Robotic Swarms

Paul J Bonczek¹ and Nicola Bezzo^{1,2,3}

¹Department of Electrical and Computer Engineering, ²Department of Systems and Information Engineering, ³Department of Computer Science University of Virginia

Figure 3. (left) limited communication range to neighboring vehicles.

Figure 4. (right) Three types of feasible attacks are considered, to on-board sensors and/or spoofed communication broadcasts.

Information Sharing: Each vehicle broadcasts on-board measurements and position, along with its neighbor's positions and nearby obstacles and goal points used for control.

Listening Nodes: Each vehicle "listens" to neighboring vehicles determined by edges of Gabriel Graph. Received information is used in position prediction of neighbors.

CONTROL AND DETECTION ARCHITECTURE

Figure 5. Control system architecture of a with potential false data entry points on measurements and state estimates. Residual-based detection scheme for detection.

Figure 6. CUSIGN accumulates the sequence of signed residual values with respect to a reference point.

Figure 7. CUSIGN test variables can be described as Markov Chain, with the threshold terminal state (red) triggering an alarm.

WAENGINEERING LINK LAB